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Defect structure of a nematic liquid crystal around a spherical particle:
Adaptive mesh refinement approach
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We investigate numerically the structure of topological defects close to a spherical particle immersed in a
uniformly aligned nematic liquid crystal. To this end we have implemented an adaptive mesh refinement
scheme in an axi-symmetric three-dimensional system, which makes it feasible to take into account properly
the large length scale difference between the particle and the topological defects. The adaptive mesh refinement
scheme proves to be quite efficient and useful in the investigation of not only the macroscopic properties such
as the defect position but also the fine structure of defects. It can be shown that a hyperbolic hedgehog that
accompanies a particle with strong homeotropic anchoring takes the structure of a ring.
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Topological defects@1–3# are associated with broken con
tinuous symmetry and can be found in various conden
matter systems. They have attracted great interests in
viewpoint of physics as well as mathematics because
macroscopic properties are often influenced by the prese
of topological defects. Among such systems showing to
logical defects, liquid crystals@4,5# have proven to be one o
the best examples for the investigation of the properties
topological defects, because they are easily accessible
controlled experimentally and show a rich variety of quali
tively different defects.

Recently, a new class of liquid crystal emulsions and c
loids, isotropic liquid droplets or solid macroparticles d
persed in a nematic host fluid, has been reported@6–9# to
show that depending on the properties of surface anchor
a rich and nontrivial variety of topological defects, such a
hyperbolic hedgehog@6,7#, an equatorial Saturn ring@8,9#
and boojums@7# appear close to the droplets or macrop
ticles. In particular, the formation of a hyperbolic hedgeh
is not trivial as compared with a Saturn ring that was focu
on in earlier theoretical work@10,11#, and several theoretica
@12,13# and numerical@14–16# studies have been devoted
the understanding of the properties of a hyperbolic hed
hog. One of the interesting results obtained by numer
analyses is that the equilibrium configuration of the topolo
cal defect accompanying a particle with strong homeotro
surface anchoring depends on the ratio between the de
core radiusr c and the radius of the particleR0. A hyperbolic
hedgehog is stable when the defect size is small enough,
r c /R0&0.05, while a Saturn ring is preferred forr c /R0
*0.05 @15#. However, in the previous numerical studi
based on a continuum description@14,15#, the topological
defect was treated as a singular point and the defect
region was considered indirectly by introducing a core
ergy separately and a cutoff around the singularities. Thi
because the direct and precise numerical treatment enc
ters a serious problem associated with a high resolution
quired for the description of the defect core region. To obt
direct evidence of the transition between a hyperbolic hed
hog and a Saturn ring numerically, we have to treat a de
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smaller than 0.05R0, which requires a numerical lattic
whose grid spacing is 1022R0 or smaller. Moreover, since
the defect sizer c is of the order 10 nm and the typical drop
let radiusR0 in the experiments is larger than 1mm @6–9#,
in realistic situation we haver c /R0&1022. Such a large
scale difference should be problematic also in molecular
namics simulations@16,17#, because a huge number of mo
ecules must be necessary to reproduce a system withr c /R0

!1. Therefore, the presence of these two character
lengthsr c andR0 with large scale difference makes it qui
difficult and challenging to investigate directly the structu
and the properties of topological defects by numerical sim
lations.

One of the possible ways to overcome the numerical
ficulty arising from the limit of numerical resources and t
requirement of a fine resolution is to use an adaptive m
refinement ~AMR! technique @18#, where finer numerical
grids are dynamically generated only in the regions of int
est with a strong variation of the spatial structures. In o
previous study@19#, we adopted this AMR scheme an
showed its usefulness for the investigation of topological
fects in liquid crystals for the first time. Although our trea
ment was restricted to two-dimensional cases, the minim
grid size could be taken smaller than 1023R0 within an ac-
ceptable numerical cost, which gives a resolution fi
enough to simulate the defect core, whose radius is of
order 1022R0. In this paper we extend our previous nume
cal implementation to an axi-symmetric three-dimensio
case to investigate directly the effect of the defect size on
equilibrium configuration of the topological defect in a nem
atic liquid crystal around a spherical particle.

To describe the orientational profile of nematic liqu
crystals we adopt the traceless tensor order parameter of
ond rankQi j instead of the directorn that most of the pre-
vious numerical studies, using a continuum descript
@14,15#, employed. In the tensor description, topological d
fects do not appear as singularities and we do not hav
deal with them separately. We consider the case whe
spherical particle of radiusR0 with the strong homeotropic
©2002 The American Physical Society09-1
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anchoring on the surface is immersed in a uniformly align
nematic liquid crystal. In the strong anchoring limit, the a
choring can be taken into account as the boundary cond
at r 5R0 , Qi j 5Qs(eri er j 21/3d i j ), where the center of the
spherical particle is located at the origin ander is the unit
vector in the radial direction. The degree of orientation
order at the surfaceQs will be taken to be equal to that of th
bulk Qb . The free energy of the system can be written a

F5E
r .R0

drF S 2
1

2
ATr Q21

1

3
B Tr Q31

1

4
C~Tr Q2!2D

1
1

2
L1]kQi j ]kQi j 2lTr QG , ~1!

where the first three terms are the bulk energy in terms of
Landau–de Gennes expansion with TrQ25Qi j Qji and
Tr Q35Qi j QjkQki ~hereafter summations over repeated in
ces are implied!. The coefficientC must be positive and the
isotropic stateQi j 50 becomes unstable to form an order
phase whenA.0. The coefficients in the simulations a
chosen asC52B53A so that the uniaxial configuratio
Qi j 5Qb(ninj21/3d i j ) with Qb51 minimizes the bulk en-
ergy. Although this is not a unique choice for the coefficie
of the bulk energy, we believe that the difference of the
efficients affects only the fine, possibly biaxial, structure
the defect core@20#. We adopt the simple one-constant for
with the elastic constantL1 as the elastic energy. The la
term with the Lagrange multiplierl is added to ensure
Tr Q5Qii 0. So long as the equilibrium configuration is co
cerned, the unique relevant dimensionless parameter is
ratio of the two characteristic lengths, the nematic cohere
lengthAL1 /A and the particle radiusR0. We will denote it
by j[AL1 /A/R0.

We restrict ourselves to an axi-symmetric case and
complex defect structure as reported by Gu and Abbott@9# is
beyond the scope of our study. We take thez axis as the
symmetry axis, which is parallel to the orientation of t
liquid crystal far away from the spherical particle. The o
entational order at (r ,u,w) in the polar coordinate is the
written asQi j (r ,u,w)5Rik(w)Rjl (w)Qkl(r ,u,w50), where
R(w) is the operator of rotation around thez axis by the
anglew, and summations overk andl are implied. Therefore
the treatment of the order parameter atw50 is sufficient and
the problem is reduced to a two-dimensional one.

In our numerical system we first make a transformat
z5R0

212r 21 and prepare in the (z,u) space aLz3Lu532
364 rectangular lattice with equal grid spacings. The adv
tage of introducingz is that the infinite space withr>R0 is
mapped to the finite regionz5@0,R0

21#. Moreover, even
without the mesh refinement, the grid size in the real spac
smaller when the grids are closer to the surface of the
ticle, where strong variation of the orientational order is e
pected. Our adaptive mesh scheme here is similar to th
originally introduced in Ref.@18# and utilized in our previous
study@19#. We allow mesh refinement up to eight levels a
our numerical system, thus, corresponds to 2133214 non-
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adaptive grids. The finest grid size in real space is then
proximately (1.231024R0)3(1.931024R0).

In this study we concentrate our attention to the hedge
configuration and the corresponding equilibrium profile
obtained by relaxing the system through the dynamics
model A @21#: ]Qi j /]t52dF/dQi j , where the timet has
been rescaled so that the kinetic coefficient is equal to un
We first perform a simulation withj25(8/3)31024 (j
51.63331022) under the initial configuration prepared b
spinning around the symmetry axis the exact orientation p
file in two dimensions@4,12,19# with two 21/2 defects lo-
cated at (r ,u)5(1.2,62°). To reduce the numerical time to
achieve the equilibrium state, simulations for all the otherj ’s
are carried out using the equilibrium profile ofj51.633
31022 as the initial condition.

In Fig. 1 we show the equilibrium orientation profile of
hedgehog configuration and the corresponding numer
grids for j5231023. Although it is not apparent in Fig
1~a!, the magnified plot of TrQ2 in Fig. 1~b! obviously re-
veals that the accompanying topological defect is a ring,
a point as believed in previous experimental@6,7# and theo-
retical @12–15# studies. We have checked that even when
use an orientation profile with one point defect as the ini
condition, the point defect relaxes to form a ring. Therefo
the formation of a ring is not an artifact arising from th
choice of the initial condition. To check quantitatively th
effect of the variation ofj @22# on the ring defect configu-
ration, we plot in Fig. 2 the radius of the disclination ring
a function ofj. We note that forj*1.831022, the hedgehog
configuration becomes unstable to form an equatorial Sa
ring. Whenj is small enough, the ring radiusRring satisfies
Rring /R0.5.5j. This implies that the ring is not seriousl
disturbed by the particle whenRring is small. In other words,
when the particle radiusR0 is large enough compared to th
size of the defect, the nematic coherence length (jR0 in a
dimensional form! is the unique length scale that determin
the spatial structure of the topological defect and the de
ring radius Rring is, thus, proportional tojR0, i.e.,
Rring /R0}j. For largej, Rring /R0 deviates to a larger value
from 5.5j, which indicates that the radial director configur
tion around the particle tends to open the disclination r
further. We note that the ringlike hedgehog may be a me
stable state, in particular for largej. The comparison of the
free energy between the hedgehog and the Saturn rin
necessary to determine whether the hedgehog configura
is really stable and will be given in a future paper.

The distance of the center of the ringr d from the center of
the particle is also plotted in Fig. 3. Forj&1022, r d /R0 is
almost independent ofj and lies in the range 1.240
,r d /R0,1.2425, close to the values obtained in previo
studies@12,14,15#. The ring defect lies closer to the partic
whenj*1022 andj ~and correspondingly, the radius of th
ring! becomes larger. This is in agreement with an intuiti
argument that the repulsion between the defect and the
ticle induced by the elastic deformation of the director fie
should be weaker when the ring becomes larger and the
rector field can relax to produce weaker elastic deformati

We note here that it was concluded in Ref.@12# that a
hyperbolic disclination ring is unstable to shrink to a poin
in contrast to our numerical study. Their argument is ba
on a rough estimate of the ring radius, which giv
9-2
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Rring /r c5exp@(16/p)(1/121K24/K)21#, where r c is the
defect core size of the order of the nematic coherence le
and K and K24 are the Frank elastic constant in the on
constant approximation and the saddle-splay elastic cons

FIG. 1. ~a! The orientation profile forj5231023. The darkness
is proportional toQzz

2 . The symmetry axis, or thez axis is along the
vertical direction.~b! The grayscale plot of the degree of orient
tional order TrQ2. The whiter region indicates smaller TrQ2. We
show only the region of the size 0.1R030.05R0. The symmetry axis
is shown by a white line.~c! The numerical grids in the same regio
as ~b!.
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respectively@23#. They drew a conclusion thatRring,r c by
settingK2450. However, it follows from the Cauchy rela
tionship@24# and recent experiments@25# that K24 can be of
the order ofK. In our simulation the one-constant form of th
elastic energy in terms of a tensor order parameter co
sponds to takingK245K/2. With this choice ofK24, the ring
configuration becomes stable becauseRring /r c;7.1. We
also note that the effect of the saddle-splay elasticity to
bilize the hedgehog ring disclination has already been
dressed in a qualitative manner by Lavrentovichet al. @26#
and that the more quantitative analysis based on the tr
ment of Mori and Nakanishi@27# also yields the same quali
tative result@28#.

In conclusion, we have investigated numerically the str
ture of a topological defect in a nematic liquid crystal arou
a spherical particle with strong homeotropic anchoring
the surface. We have used the technique of adaptive m
refinement, so that the resolution can be made fine enoug
study the situation where the nematic coherence length i
the order 1023R0, with R0 being the radius of the spherica
particle. We have paid attention to the less trivial hedgeh

FIG. 2. The radius of the defect ring as a function ofj. The
dashed line representsRring /R055.5j.

FIG. 3. The distance of the center of the defect ringr d from the
center of the spherical particle as a function ofj.
9-3
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configuration and have shown that the hedgehog defec
made up of a small ring rather than a point as argued in
previous experimental and theoretical studies. The ring
dius in the hedgehog configuration can be as large as 0.1R0,
at least in a metastable state. Finally we note that altho
the maximum radius of the stable defect ring correspond
to the hedgehog configuration is of the order 50 nm when
nematic coherence length is the typical value 10 nm,
nematic coherence length can take a larger value near
e,

ce
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nematic-isotropic transition as pointed out in Ref.@10#. In
such a situation the observation of the fine defect struc
by an optical method might be possible and we encour
experiments to observe fine structures of the topological
fects close to particles immersed in a nematic liquid crys
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